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Murranimbine, a naturally occurring dimeric carbazole alkaloid, isolated from the root bark of Murraya
euchrestfolia was synthesized in one step by the application of Lewis acid (BF3–Et2O) on its monomer gir-
inimbine. A new dimer of koenidine was also synthesized following the same procedure. Structures of
these dimeric carbazole alkaloids were determined by detailed spectral analysis.

� 2010 Elsevier Ltd. All rights reserved.
The genus Murraya encompasses several carbazole alkaloids
and has been shown to display numerous biological activities
including anti-malarial1, anti-oxidant1 and anti-fungal.1 A number
of dimeric carbazole alkaloids were also isolated from different
species under the genus Murraya.2–9 Some of these dimeric carba-
zole alkaloids were reported to have important biological activities,
for example, anti-microbial2, anti-oxidative10 and cytotoxic activ-
ity.11 In recent times, synthesis of dimeric carbazole alkaloids is
considered to be a challenging problem. The total synthesis of
murrastifoline-A was reported by Kitawaki et al. utilizing palla-
dium-catalyzed double N-arylation reaction.12 The synthesis of
the methylene-bridged binary carbazole alkaloids bis-murrayafo-
line-A and chrestifoline-A was described by Bringmann and Tas-
ler.13 As an interesting side product, a benzylically connected
trimer was also identified.13 Intermolecular coupling of pyranocar-
bazole alkaloids was also reported in the literature leading to bis-
carbazole alkaloids.14 In the present communication, we would
like to report the first one-pot synthesis of murranimbine 3, which
was previously isolated from Murraya euchrestfolia15, from its
monomer girinimbine 116 and a new dimeric carbazole alkaloid 4
from koenidine17 (Fig. 1). The structures of the dimers were deter-
mined by detailed 1D and 2D NMR spectral analysis.

Reaction of girinimbine 1 with BF3–etherate18 afforded an
amorphous white solid 3, the 1H NMR (Table 1) spectrum of which
ll rights reserved.
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hyay).
displayed two aryl methyl groups and two sets of gem-dimethyls
attached to oxygenated carbons which are characteristic peaks of
pyranocarbazole alkaloids. There were two sets of four aromatic
protons and two aromatic singlets which had long-range coupling
and NOE responses with the aryl methyls. These data suggested
that compound 3 contained two girinimbine units. In the HMBC
spectrum of 3 the proton (H-120, dH 6.11) of the benzylic methine
attached to N atom was related to another benzylic methine car-
bon (C-12, dC 27.1) on upper unit and the proton at d 2.15 (H-
110) was related to C-11 (dC 39.7) indicating C–C linkage between
C-12 and C-110. On the other hand, 1–3 correlations between the
proton at C-120 (dH 6.11, dC 50.4) and C-8a (dC 138.9) confirmed
the presence as well as position of the C–N linkage. The relative
stereochemistry was proposed by NOE correlations, which showed
that H-12 (dH 3.10), H-120 (dH 6.11) and H-110 (dH 2.15) are in the
same plane (Fig. 2). Finally the structure 3 was found to be identical
with naturally occurring dimeric carbazole alkaloid murranim-
bine15 by comparison of spectral data of the natural product and
synthetic material. The probable mechanism of the formation of
the dimer 3 may be initiated by the nucleophilic addition by the
lone pair of NH group of one monomer to the electron-deficient
centre at C-120 of the second molecule with concomitant ring clo-
sure resulting in the formation of a new six-membered ring.

Koenidine 2 on treatment with BF3–etherate18 gave a new di-
mer 4, the structure of which was also established by detailed anal-
ysis of spectral data (Table 2, Fig. 3). Interestingly the dimer 4 has
exactly similar skeletal pattern as in 3. Thus this simple reaction
provides a rapid and efficient entry to naturally occurring dimeric
carbazole alkaloids from simple pyranocarbazole precursors.
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Figure 1. Dimerization reaction of girinimbine and koenidine with BF3–etherate.

Table 1
NMR spectroscopic data (600 MHz, CDCl3) for compound 3 assigned on the basis of HSQC and HMBC correlations

Position dc, mult. dH (J in Hz) HMBC correlations

C-1 103.1, qC 27.1(C-12), 39.7(C-11)
C-2 150.3, qC 16.6(CH3-3), 39.7(C-11), 120.1(C-4)
C-3 119.0, qC 16.6(CH3-3)
C-4 120.1, CH 7.70, s 16.6 (CH3-3), 124.5(C-4b), 136.2(C-9a), 150.3(C-2)
C-4a 118.8, qC 124.0(C-5)
C-4b 124.5, qC 120.1(C-4)
C-5 124.0, CH 7.07 dd (7.8, 1.2) 138.9(C-8a), 118.8(C-4a)
C-6 120.6, CH 8.10, d (7.8) 124.0(C-5)
C-7 118.7, CH 7.80, d (7.8) 138.9(C-8a), 124.0(C-5)
C-8 120.1, CH 7.33, t (7.2) 124.5(C-4b), 136.2(C-9a)
C-8a 138.9, qC 118.7(C-7), 124.0(C-5), 50.4(C-120)
C-9a 136.2, qC 120.1(C-8)
C-10 75.0, qC 39.7(C-11), 30.6(CH3-10), 25.1(CH3-10)
C-11 39.7, CH2 2.38, d (5.4), 1.63, m 27.1(C-12), 103.1(C-1), 25.1(CH3-10), 30.6(CH3-10), 75.0(C-10)
C-12 27.1, CH 3.10, m 39.7(C-11), 46.4(C-110), 103.1(C-1), 50.4(C-120)
CH3-3 16.6, CH3 2.29, s 120.1(C-4), 119.0(C-3), 150.3(C-2), 118.8(C-4a)
CH3-10 30.6, CH3 1.48, s 25.1(CH3-10), 39.7(C-11), 75.0(C-10)
CH3-10 25.1, CH3 1.22, s 30.6 (CH3-10), 39.7(C-11), 75.0(C-10)
C-10 106.6, qC 50.4(C-120), 46.4(C-110)
C-20 150.4, qC 50.4(C-120), 39.7(C-11), 16.7(CH3-30)
C-30 112.5, qC 120.7(C-40)
C-40 120.7, CH 7.76, s 16.7(CH3-30), 136.0(C-9a0), 150.4(C-20)
C-4a0 117.6, qC 118.9(C-60)
C-4b0 122.3, qC 120.7(C-40), 118.9(C-60), 110.2(C-80)
C-50 108.7, CH 7.51, d (8.4) 123.9(C-70)
C-60 118.9, CH 7.02, t (7.2) 110.2(C-80)
C-70 123.9, CH 7.42, t (7.2) 139.6(C-8a0), 118.9(C-60)
C-80 110.2, CH 6.65, d (7.8) 118.9(C-60)
C-8a0 139.6, qC 123.9(C-70)
C-9a0 136.0, qC 120.7(C-40), 50.4(C-120)
C-100 78.9, qC 28.8(CH3-100)
C-110 46.4, CH 2.15, m 106.6(C-10), 28.8(CH3-100), 39.7(C-11), 27.1(C-12), 50.4(C-120)
C-120 50.4, CH 6.11, d (4.8) 138.9(C-8a), 27.1(C-12), 46.4(C-110), 106.6(C-10), 136.0(C-9a0),

150.4(C-20), 78.9(C-100)
CH3-30 16.7, CH3 2.41, s 120.7(C-40)
CH3-100 28.8, CH3 1.71, s 28.8(CH3-100), 78.9(C-100)
CH3-100 28.8, CH3 1.71, s 28.8(CH3-100), 78.9(C-100)
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Table 2
NMR spectroscopic data (600 MHz, CDCl3) for compound 4 assigned on the basis of HSQC and HMBC correlations

Position dc, mult. dH (J in Hz) HMBC correlations

C-1 103.3, qC 119.1(C-4), 39.6(C-11), 112.7(C-3)
C-2 149.2, qC 16.5(CH3-3), 119.1(C-4), 27.1(C-12)
C-3 112.7, qC 103.3(C-1), 119.1(C-4)
C-4 119.1, CH 7.62, s 103.3(C-1), 149.2(C-2), 112.7(C-3), 135.6(C-9a)
C-4a 118.5, qC 16.5(CH3-3), 101.4(C-5)
C-4b 114.3, qC 119.1(C-4), 94.3(C-8)
C-5 101.4, CH 7.30, s 118.5(C-4a), 133.8(C-8a), 144.4(C-7)
C-6 148.2, qC 56.1(OCH3-6), 101.4(C-5), 94.3(C-8)
C-7 144.4, qC 56.6 (OCH3-7), 101.4(C-5), 94.3(C-8)
C-8 94.3, CH 6.26, s 114.3(C-4b), 133.8(C-8a), 144.4(C-7), 148.2(C-6)
C-8a 133.8, qC 94.3(C-8), 101.4(C-5), 50.8(C-120)
C-9a 135.6, qC 119.1(C-4)
C-10 74.8, qC 39.6(C-11), 30.6(CH3-10), 25.0(CH3-10)
C-11 39.6, CH2 2.32, 1.57, m 27.1(C-12), 25.0(CH3-10), 30.6(CH3-10), 47.8(C-110), 103.3(C-1)
C-12 27.1, CH 3.02, m 103.3(C-1), 39.6(C-11), 47.8(C-110), 149.2(C-2), 31.4(CH3-100), 50.8(C-120)
CH3-3 16.5, CH3 2.29, s 119.1(C-4)
OCH3-6 56.1, CH3 3.78, s 148.2(C-6)
OCH3-7 56.6, CH3 4.08, s 144.4(C-7)
CH3-10 30.6, CH3 1.47, s 25.0(CH3-10), 39.6(C-11), 74.8(C-10)
CH3-10 25.0, CH3 1.19, s 30.6 (CH3-10), 39.6(C-11), 74.8(C-10)
C-10 107.9, qC 47.8(C-110), 119.4(C-40), 50.8(C-120)
C-20 149.3,qC 119.4(C-40), 16.6(CH3-30), 50.8(C-120)
C-30 118.5, qC 16.6(CH3-30)
C-40 119.4, CH 7.66, s 149.3(C-20)
C-4a0 116.4, qC 119.4(C-40), 92.9(C-50)
C-4b0 119.0, qC 134.2(9a0)
C-50 92.9, CH 6.98, s 116.4(C-4a0), 144.1(C-70)
C-60 147.9, qC 56.4(OCH3-60)
C-70 144.1, qC 56.5(OCH3-70)
C-80 103.4, CH 7.61, s 134.2(C-9a0), 147.9(C-60)
C-8a0 135.9, qC 103.4(C-80)
C-9a0 134.2, qC 119.4(C-40), 50.8(C-120)
C-100 79.4, qC 31.4, 28.0(CH3-100), 50.8(C-120), 47.8(C-110)
C-110 47.8, CH 2.21, m 27.1(C-12), 50.8(C-120), 107.9(C-10), 31.4(CH3-100), 28.0(CH3-100), 39.6(C-11)
C-120 50.8, CH 5.96, d (4.8) 133.8(C-8a), 118.5(C-30), 149.3(C-20), 107.9(C-10), 47.8(C-110), 27.1(C-12), 79.4(C-100)
CH3-30 16.6, CH3 2.43, s 119.4(C-40), 149.3(C-20)
OCH3-60 56.4, CH3 3.86, s 147.9(C-60)
OCH3-70 56.5, CH3 3.91, s 144.1(C-70)
CH3-100 28.0, CH3 1.65, s 31.4(CH3-100), 47.8(C-110), 79.4(C-100)
CH3-100 31.4, CH3 1.73, s 28.0(CH3-100), 47.8(C-110), 79.4(C-100)
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Figure 2. Some important COSY and NOESY correlations of compound 3.
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